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Abstract

Analyses of brain sizes across mammalian taxonomic groups reveal a consistent pattern of covariation

between major brain components, including a robust inverse covariation between the limbic system and

the neocortex. To find the functional basis of this inverse relationship, we mapped the multidimensional

representations of task-optimized machine learning systems onto two-dimensional surfaces resembling

the forebrain cortices. We found that visual, somatosensory and auditory systems develop ordered spa-

tiotopic maps where units draw information from localized regions of the sensory input. Olfactory and

relational memory systems, in contrast, develop fractured maps with distributed patterns of information

convergence. Evolutionary optimization of multimodal systems for varying task objectives results in

inverse covariation between spatiotopic and disordered system components that compete for representa-

tional space. These results suggest that the observed pattern of covariation between brain components

reflect an essential computational duality in brain evolution.
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One entity in the vertebrate brain has attracted the attention of researchers for decades, but it has resolutely
resisted definition, or even exact specification of its contents. The anatomical term “limbic system” designates
the presence of a number of the entity’s elements on the limbus, or edge of the embryonic lateral ventricle of
the forebrain, including the rhinal and entorhinal cortices (variably, depending on each researcher’s focus),
the subicular cortices and hippocampus, the amygdala, septal and other basal forebrain nuclei, with the
connections to the cingulate cortices of the neocortex often emphasized. The “rhinencephalon”, smell-brain,
features the olfactory system, the sensory receptors of main olfactory bulb and vomeronasal organ, and
their primary targets, including primary olfactory cortex (“pyriform cortex”), the amygdala, additional
basal forebrain nuclei of the olfactory tubercle and the parahippocampal gyrus, and the secondary targets
of the hippocampus, thalamus and areas of neocortex as recruited. Those describing a memory-dedicated
system will excise primary chemosensory and most basal forebrain nuclei from the group and add details
and subdivisions to the hippocampus, entorhinal cortex and immediately interwoven cortex-like structures.
Particularly in the field of neurology, the emotional sequelae of damage to collections of these regions were
marked (e.g. “Kluver-Bucy syndrome”, “septal rage”).

Even with these disparate and often disjoint functions, integration over these nuclei and cortices was and
is routinely emphasized. For example, “Papez’s circuit”, a collection of tracts often featured in medical
textbooks, is so prominent it can be traced by blunt dissection, linking the hippocampus via the fornix to
the hypothalamus, then to the anterior nucleus of the thalamus, to limbic cortices and back to hippocampus.
It’s the rare current neuroscience textbook that fails to note the special emotional salience of olfactory
memories. Unfortunately, one attempt to integrate over these diverse regions, Paul MacLean’s “triune
brain” theory, popularized in Carl Sagan’s Dragons of Eden, persists to this day in the evocation of “my
lizard brain” to account for uncontrolled emotional excess by the utterly false evolutionary tale that reptiles
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have only brain up to and including the olfactory and emotional rhinencephalon, grown over later by the
logical neocortex, reaching its full flower in humans.

Fortunately, theories much better integrated over evolutionary, embryonic, neurophysiological and neurologic
reality were developed. Walle Nauta, saw the whole brain as characterized by two ascending systems, one, the
ascending core, open, polysynaptic, concerned with evaluative sensation and physiological maintenance, and
that integrated at the level of the hypothalamus and limbic regions, and a second fast-conducting, analytical
(as in rapid skin sensation, vision and hearing), organized at the level of the thalamus and neocortex. The
brain becomes integrated over these two systems for movement selection and a!ect in the basal ganglia
of the forebrain. A separate thread ranks cortical structures across both limbic and neocortical origins
in a hierarchy of prediction and control of emotional/physiological, motor and sensory states, choices and
evaluation. A characterization of the forebrain based on developmental gene expression gives a better original
segmentation, and characterization of changing segmental and neuronal fates as brains enlarge. In fact, the
need for any complementary characterization of forebrain at all is called into question. To list just a few of
the contradictions in the limbic/other cortex distinction: no empirical justification exists to view olfaction as
more emotion-laden than the voices of significant others; the hippocampus gets rather little olfactory input
in many mammals and can’t be viewed as an olfactory structure; the hippocampus and neocortex both span
the domains of emotion, event and sensorimotor world evaluation.

And yet, in a quite unexpected turn, the evolution and development of the vertebrate brain forces a two-
systems view back into prominence. This is no invocation of the new brain-on-old brain layering of a scala
naturae of fish, reptile, monkey and human – all vertebrates have essentially the same gross forebrain-
to-spinal-cord segmentation, with no segments added on. Within those segments, the general functional
commitment of regions remains remarkably stable, with the anterior-most and lateral-most regions of the
embryonic neural plate destined to proliferate relatively the most in the larger brain. Rather, a strong pattern
of complementary covariation between the cortical elements of the forebrain was first described quantitatively
by Harry Jerison (though arguably misnamed) and has proven to be a volumetric distinction echoed between
all large vertebrate taxonomic groups that have been studied, within taxonomic groups, and in individual
variation within species, including our own. A push-pull relationship between the limbic system and the
neocortex is evident in the data, with a volumetric expansion of one concomitant with a shrinkage of the
other, after concerted allometric scaling is taken into account. We argue that this two-systems organization
is characterized by distinct connectivity patterns in the component networks. The olfactory system and
hippocampus have as their base a widely distributed patten of axon extension, whereby distributed neural
activity patterns identify a particular odorant in the case of the olfactory structures, and a unique event
in the case of the hippocampus. The neocortex, in contrast, preserves local spatial relationships in the
projections of its subregions, cortical areas, onto each other. In most of the lateral convexity of the cortex,
the dimensions that are mapped between areas represent egocentric space, over several sensory modalities
and the motor modality, with cortical maps maintaining nearest neighbor relationships of the sensory and
motor surfaces. In part of the cortex (the temporal lobe in humans), spatially ordered cortical projections are
employed for non-egocentric mapping, as in tonotopy in auditory cortical representations, or the often-hybrid
representations of faces, scenes, words and concepts.

We propose that the reason for the di!erent patterns of axonal projections in the two systems is a compu-
tational one, that optimal representations of the associated modalities are achieved with distinct network
architectures that induce system-specific inductive biases. To investigate, we encoded the representational
space of task-optimized artificial neural networks in a two-dimensional model cortical sheet using topology-
preserving maps. We found that networks optimized for visual, tactile and auditory representations converge
to orderly spatiotopic maps that maintain nearest neighbor relationships of the input array, resembling sen-
sory maps and connectivity profiles in the neocortex. In contrast, networks optimized for olfactory and
relational memory representations evolved fractured maps with distributed connectivity profiles resembling
axon distribution patterns of the olfactory-limbic system. Using evolutionary optimization, we optimized
a multimodal network consisting of two subnetworks, one with spatiotopic and the other with distributed
architecture. Selecting for di!erent task objectives, we found an inverse relationship between the two sub-
networks, resembling the inverse covariation between olfactory-limbic and neocortical system sizes observed

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2025. ; https://doi.org/10.1101/2024.11.19.624321doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.19.624321
http://creativecommons.org/licenses/by-nc-nd/4.0/


across species. Our results provide a computational account of a 550-million-year-old essential duality of the
vertebrate brain.

Neocortex and limbic system covariation
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Figure 5. Allocation of forebrain volume to olfactory/limbic components versus neocortex or ‘other forebrain’ in vertebrates. All vertebrate taxonomic groups examined to
date show covariation of a set of olfactory and limbic structures which vary independently or negatively with respect to the volume of the rest of the brain or neocortex. The
species chosen for illustration in panels (a,b) contrast the structural consequences of weighting on the olfactory/limbic factor, in the context of other covariates, brain and
body mass and nocturnal and diurnal niche. (a) Contrast of the nocturnal owl monkey with the nocturnal/diurnal agouti, lateral view, rostral to the right. Their brains are
quite similar in volume, while the agouti’s body mass is approximately five times the owl monkey’s, which can be appreciated by comparing the spinal cords. In the owl
monkey, the olfactory bulb and tract is a barely visible thin ribbon on the inferior aspect of the rostral forebrain, while the agouti’s are robust. Primary olfactory cortex,
piriform cortex, is visible below the dorsal neocortex. In the owl monkey, the size of the neocortex obscures all other brain components from view, including the cerebellum,
equal in size to the agouti’s [110]. Magnification is equivalent for both brains. (b) A coronal section from a large-brained, small bodied squirrel monkey (Primata) is
contrasted with that of a small-brained, larger-bodied armadillo (Xenarthra), which represent the extreme divisions of the graph in (c). The section was chosen at
the point of maximum cross-sectional volume of the hippocampus of each, which is quite small in the monkey, as is the olfactory cortex. In the armadillo, the hippocampus
and olfactory bulb and cortices dominate the volume of the forebrain. Images are from the Comparative Mammalian Brain Collections, www.brainmuseum.org, property of
the University of Wisconsin and Michigan State Comparative Mammalian Brain Collections, funded by the National Science Foundation and the National Institutes of Health.
(c) The strong negative correlation within and across mammalian taxonomic groups of the relative volume of the olfactory/limbic principal component compared to neo-
cortex volume, both normed with respect to core (medulla, mesencephalon, diencephalon and striatum) [103]. Additional point for Mus musculus estimated from [111].
Black circle in the upper left quadrant is around the squirrel monkey data point, while that in the lower right quadrant is the armadillo. Microbats are filled squares, while
mega bats are open. (d ) A comparable analysis of residual volumes of the olfactory bulb versus ‘rest of forebrain’ predicted from medulla volume for sharks and rays. In this
case, brain volumes show a relationship to niche, with greater volume for ‘rest of forebrain’ for reef denizens (turquoise symbols) and greater olfactory bulb volume for deep
water denizens (dark blue), but the brain features vary independently, not negatively with respect to each other [94].
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Figure 1: (a) Volume of the neocortex plotted against the

volume of the olfactory system for 183 mammalian species

across 10 taxonomic groups. The volumes are expressed as

a fraction of the total volume of a core set of brain compo-

nents (medulla, mesencephalon, diencephalon, striatum),

in natural log scale. The olfactory system shown is the

combined volume of olfactory bulb, olfactory cortex, olfac-

tory tubercle including other medial forebrain nuclei, and

the amygdala [1]. (b) Lateral view of the brains of an owl

monkey (Aotus azarae, a small nocturnal primate) and an

agouti (Dasiprocta agouti, a large diurnal/nocturnal ro-

dent), chosen to demonstrate the strong contrast that can

be seen in the relative size of the olfactory system versus

the neocortex in brains of similar overall volume. Redrawn

with permission from [2].

We used data collected for allometric analysis of
brain structures in 183 mammalian species across
10 taxonomic groups including Homo sapiens [1–6].
Figure 1a plots the size (volume) of the neocortex
against the size of the olfactory system for each
species; the size of each structure is normalized with
respect to core brain components (Methods) [7]. A
robust negative correlation between the two systems
is evident. Insectivores (hedgehogs, tree shrews,
frogs) have relatively large olfactory systems and
small neocortices, whereas primates, pinnipeds, un-
gulates and carnivores, and the manatee have re-
duced olfactory systems and enlarged neocortices.
This inverse relationship can be partly understood
by the dominant sensory systems of the taxonomic
groups involved. Insectivores, or small insect-eating
mammals, are often nocturnal, rely on olfactory cues
for foraging, and have relatively large olfactory bulbs
and olfactory cortices. In contrast, primates are
highly visual, with a large fraction of the neocor-
tex taken up by primary and extrastriate visual cor-
tices. This contrast between olfaction and vision
can be seen in all vertebrates, in aquatic species,
reptiles, birds, and mammals, and is so pronounced
that it can be seen in whole brains. Figure 1b shows
a lateral view of the brains of an owl monkey and an
agouti [2]. The brains are similar in volume, but the
di!erence in the relative sizes of the neocortex and
the olfactory system is apparent, with the neocortex
in the primate obscuring both the olfactory system
and the cerebellum from view.

Figure 2a depicts a coronal section of the forebrain
at the posterior thalamus level in a squirrel monkey
(simian) and a nine-banded armadillo (xenarthra).
The relatively larger olfactory cortices in the armadillo might be expected from their relatively greater reliance
on olfaction, but its massive hippocampus is striking. In other mammals like the armadillo, olfactory input
to the hippocampus is strong, but not dominating. The latter integrates multiple streams of information,
including those originating in the neocortex, and thus is not a secondary “olfactory” structure [1]. Across
taxonomic groups, the hippocampus positively covaries with the olfactory system (Figure 2b), which contrasts
with the negative covariation between the olfactory system and the neocortex described above (Figure 1a).
Why does the size of the hippocampus strongly covary with that of the olfactory system? In the following
sections we argue that this covariation reflects a common computational architecture characterized by a
common pattern of network connectivity distinct from that of the neocortex.

In addition to the hippocampus, all other limbic system components, including the amygdala, septum, and
schizocortex, positively covary with the olfactory system (Figure 2c) and with each other. This concerted
change of limbic system components along with their inverse covariation with the neocortex (Figure 2d)

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2025. ; https://doi.org/10.1101/2024.11.19.624321doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.19.624321
http://creativecommons.org/licenses/by-nc-nd/4.0/


suggests a two-systems view of the macroscale organization of the brain. In early neurodevelopment, the two
regions can be easily distinguished by their patterns of cell proliferation and early gene expression [8] and
in the expression of transcription factors, notably LAMP, “limbic-associated marker protein” [9], suggesting
distinct developmental rules of network formation.
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Figure 2: (a) Cross-section of the brain of a squirrel monkey (Saimiri sciureus) and a nine-banded armadillo
(Dasipus novencinctus) showing the relatively enlarged neocortex in the monkey (blue) and the relatively
enlarged olfactory and limbic cortex (dark purple) in the armadillo. Note also the relative expansion of the
hippocampus in the armadillo (green). (b) Normalized volumes of the hippocampus plotted against that
of the olfactory system across species (Pearson r = 0.82). (c) All limbic system components have strong
positive covariation with the olfactory system. In contrast, the neocortex has strong negative covariation.
Shown are the Pearson correlation coe”cients between the normalized volumes of each structure and that
of the olfactory system across species. “Schizocortex” includes the entorhinal, perirhinal, presubicular and
parasubicular cortices. Amygdala volumes were available separately from the olfactory system for 103 of
the 183 species analyzed. (d) Normalized volume of the neocortex plotted against that of the limbic system
(sum of normalized volumes of all limbic system components) across species. A robust negative covariation
is evident (Pearson r = -0.84). Images in subplot a are from the Comparative Mammalian Brain Collections,
www.brainmuseum.org, property of the University of Wisconsin and Michigan State Comparative Mam-
malian Brain Collections, funded by the National Science Foundation and the National Institutes of Health.

Structure of sensory and cognitive maps

Information structure and optimal representations. To understand the reasons underlying the pat-
tern of covariation in brain evolution described above, we investigate the structure of distinct information
sources driving brain computation and their optimal representations. For this purpose, we assess the mul-
tidimensional representational space of modern machine learning systems, optimized for one of four sensory
modalities – vision, audition, somatosensation and olfaction – followed by a system optimized for relational
memory. The sensory systems consist of the following artificial neural network architectures pre-trained
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on large data corpora (1) ResNet trained on images from the ImageNet database [10, 11], (2) wav2vec 2.0
trained on natural speech from the Libri speech corpus [12, 13], (3) a convolutional architecture trained on
a dataset of tactile signals of the human grasp [14], and (4) an olfactory systems model trained on olfac-
tory receptor neuron activation profiles [15]. These networks show strong correspondence to neural activity
and structural connectivity patterns in the brain within particular parameter regimes [11, 13, 15]. Training
optimizes network connection weights, and subsequently, the networks embed manifolds of stimulus feature
information in their activity.

Figure 3: Information sources of four sensory modalities. (a) Samples from the ImageNet dataset. ImageNet
images are characterized by spatial correlation visible in the form of contrastive backgrounds, repeating
textures, and distinct natural shapes. (b) Top: visualizations of pressure readouts from the tactile glove
dataset [14]. Bottom: perspective images showing the creation of each sample. Activated regions of the
tactile glove are highly localized, as clusters of adjacent sensors respond to pointwise contact with the
object being classified. (c) One-dimensional cochleagram slices (top) and time-amplitude representation of a
single sample (bottom), each from the LibriSpeech ASR corpus. In the cochleagram slices, frequency bands
associated with human speech form localized patterns. (d) Left: subset of 150 synthetic odors from the
Wang et al dataset [15] showing activation values of two olfactory receptor neurons (ORNs). Each odor
sample is encoded by 50 ORNs in the dataset. Individual odors are classified by their proximity to two
prototype odors (triangles) which are distributed across the full range of possible values and exhibit minimal
local spatial correlations. Right: ORN activation profiles of five sample odors from the dataset. (e) Barplot
showing spatial autocorrelation (Moran’s I) across the aforementioned datasets. Moran’s I is the ratio of
the spatially weighted covariance to the overall variance, normalized by the number of observations and the
sum of the spatial weights. This metric is expressed in a range from -1 to 1, where positive values indicate
increasingly strong local similarity, values near zero suggest random spatial patterns, and negative values
indicate strong local dissimilarity.
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The data used to optimize each model is depicted in Figures 3a-d. We observe a dichotomy in the structure
of information across modalities, with visual, auditory, and somatosensory data showing pronounced spatial
structure, as measured by spatial autocorrelation (Moran’s I [16]), and olfactory data lacking any such
structure (Figure 3e). Coarse-scale chemotopy in olfactory receptor neuron population representations have
been proposed in some studies [17], but it is clear that they lack the fine-grained spatial order characteristic
of primary visual, somatosensory and auditory representations [18–21]. We argue that this dichotomy in
the structure of information sources underlies the two-systems architecture that we proposed, each system
pre-configured with knowledge of the core statistical structure of their input.

Spatiotopic and disordered maps. After optimization of network parameters in the models, network
activity constitutes an optimized population code of stimulus features across a multi-dimensional feature
space. A prevailing theoretical account of cortical organization posit that such multi-dimensional feature
spaces are represented in two-dimensional cortical surfaces in a manner that preserves the topology of the
stimulus manifold [22–25]. Similar stimulus features are represented in nearby locations on the cortical
surface to aid e”cient similarity-dependent computations. Following this account, we construct Kohonen
self-organizing maps (SOMs) to represent the optimized feature spaces of our models on a two-dimensional
cortex-like surface [25]. We consider the organization of primary sensory maps that are in place early in
brain development and whose activity drive areal organization across the system [26, 27]. Specific layers of
our models show strongest correspondence to activity in primary sensory areas and we construct SOMs using
activity in these layers (Methods) [11, 13–15].

Figure 4a shows the maps that develop in each modality, highlighting two contrasting structures. Visual,
auditory and somatosensory maps converge to orderly representations that maintain nearest neighbor rela-
tionships of the sensory surface resembling spatiotopic organization that characterizes the entire neocortex.
Olfactory maps, in contrast, develop fractured representations akin to disordered chemotopy in the olfac-
tory bulb and cortex. We quantify the degree of global spatial order in each map by computing the mean
Euclidean distance between each unit’s preferred stimulus and that of its adjacent units, normalized by the
expected distance in a random arrangement and negated to result in an order metric (Methods). This results
in an index that ranges from 0 (low order) to 1 (high order). We measure values of 0.90, 0.86 and 0.89 for
visual, somatosensory and auditory maps respectively, and 0.11 for olfactory maps.

We then assess the receptive fields of individual SOM units and find that visual, somatosensory and auditory
units draw information from localized regions of the sensory surface, whereas olfactory units sample across
distributed parts (Figure 4b), recapitulating a central distinction between a!erent projection patterns in
primary olfactory cortex and primary sensory areas of neocortex. We measure the degree of locality of
the receptive fields by computing the spatial autocorrelation (global Moran’s I) of representative SOM unit
receptive fields, again resulting in an index that ranges from 0 (low locality) to 1(high locality). We calculate
locality indices of 0.97, 0.84 and 0.99 for vision, somatosensation and audition respectively, and 0.00 for
olfaction. Further, we find that this pattern of information convergence arises within unstructured (fully-
connected) networks solely as a consequence of gradient-based optimization of information representation
without prespecified network structure (Supplementary Materials) [28]. Overall, the contrasting structure
of information representation between the spatiotopic and olfactory modalities mirrors the dual structure of
their information sources (Figure 3) and underscores a pronounced duality in the organization of optimal
sensory representations.

Relational memory. We next assess representations in the Tolman-Eichenbaum Machine (TEM), an
artificial neural network for relational inferences modeled on computations in the hippocampus and entorhinal
cortex [29]. The network is trained to learn conjunctions of perceptual and structural representations and
develops a cognitive map via which relationships between objects and their spatial or abstract locations are
inferred (Figure 5a). Activity within the network resemble activity patterns in spatial and non-spatial cell
types in the hippocampus and entorhinal cortex, as well as their structural remapping under new stimuli,
within particular parameter regimes [29]. We encoded the conjunctive representations of this model in a
two-dimensional surface using a SOM and compared its structural features to the sensory systems maps of
Figure 4.
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a Maps

b Receptive fields

Vision Somatosensation Audition Olfaction

Figure 4: (a) Model cortical sheets constructed by encoding the multidimensional representational space of
task-optimized artificial neural networks in two-dimensional surfaces using Kohonen self-organizing maps [25].
Models of four sensory systems are constructed. The top row depicts the sensory input colored by location.
The bottom row shows maps of the sensory input on the model sheets. Each sheet consists of 25 x 25
units. Each unit is colored according to the input location that maximally activates the unit. The gradual
transition of colors in visual, somatosensory, and auditory representations indicate a smooth mapping of the
input space on the cortical surface. No such mappings are found for olfactory representations. (b) Example
receptive fields of model units indicating the degree to which each region of the input activates a unit.
Receptive fields in vision, somatosensation and audition are spatially localized whereas those in olfaction are
spatially distributed.

As in the olfactory maps, hippocampal maps develop fractured representations that lack global spatial order,
with SOM units drawing information from distributed parts of the TEM’s input (Figure 5d-e), resembling
sparse and distributed coding in the hippocampus [30–32]. We compare map indices across models and
observe that both olfactory and hippocampal representations exhibit low spatiotopic order and distributed
receptive fields, indicating that the associated computations benefit from inductive biases that are distinct
from those of the other sensory systems (Figure 5f-g).

Evolution of a dual computational system

The structure of optimal representations discussed so far mirrors the structure of primary sensory represen-
tations in the brain in place early in development. This pre-configuration of network architectures prior to
stimulus exposure serves subsequent computations by encoding knowledge of the structure of expected stim-
uli in network connectivity. What developmental factors shape this connectivity and what axes of variations
are o!ered up to natural selection? To investigate, we configured a dual-systems architecture consisting
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Figure 5: The Tolman-Eichenbaum Machine (TEM) learns relational structure of a problem and uses that
knowledge to make quick inferences in new problem instances. Relational structure exists in many situations,
for example (a) spatial reasoning, (b) social hierarchies and (c) transitive inference. The TEM infers the
green relationships after observing only the blue ones using a generative model of the hippocampus and
entorhinal cortex. Figures adapted from [29]. Clipart designed by Freepik. (d) Hippocampal activity of the
TEM is encoded in a two-dimensional surface using Kohonen self-organizing maps [25]. Shown is a surface
consisting of 25x25 units, where each unit is colored according to the location of the input that maximally
activates that unit. The disordered map resembles the olfactory map of Figure 4a. (e) Example receptive
fields of hippocampal units in the TEM. The receptive field of a unit (1D horizontal bar) shows the degree
to which each region of the input activates that unit. The spatially dispersed receptive fields resemble those
of the olfactory map in Figure 4b. (f-g) Indices measuring the order of the maps and the locality of the
receptive fields across the five modalities. Hippocampal relational memory and olfactory representations
have distinct organization compared to the spatiotopic sensory systems as indicated by the values of these
indices. Plotted are the means and standard deviations across ten simulations with di!erent random seeds.

of two subnetworks, one with spatiotopic and the other with distributed organization drawing input from
five sources of information – visual, somatosensory and auditory sources providing input to the spatiotopic
network, and olfactory and hippocampal sources to the distributed network (Figure 6a). Units within the
spatiotopic and distributed networks are allocated equally among their constituent components. We ask how
these networks may co-vary under selection pressures along a single dimension of variation – the location of
the boundary dividing the spatiotopic and distributed subnetworks. The boundary determines the number
of units, or the amount of computational resources, allocated to each modality and its variation accounts for
a minimal degree of stable developmental control of tissue allocation (Figure 6b). We use an evolutionary
algorithm [33, 34] to optimize the position of this boundary under a selection criterion defined by a param-
eter s that takes a value between 0 and 1; a low value of s selects for olfaction and a high value selects
for vision. We initialize a population of networks, each with a roughly even allocation of units between the
spatiotopic and distributed networks, and ran the evolutionary algorithm for fifty optimization steps. At
each step, the networks with the highest task performance are selected, and the locations of their boundaries
are varied uniformly at random to generate networks for the subsequent step (Methods). Task performance
is a combination of olfactory and visual signal identification, as defined by the parameter s. The algorithm
optimizes the performance of the networks across iterative steps of variation and selection.
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Figure 6: An evolutionary algorithm accounts for patterns of covariation among brain components. (a) A
dotted boundary separates two networks with distributed connections from three networks with spatiotopic
(local) connections at their inputs. Shifting this boundary adjusts the number of units allocated to each
side proportionally. New generations of networks are produced by randomly stepping the boundary in the
direction associated with the fittest survivors from the previous generation. (b) Depiction of selecting for
olfaction. The boundary shifts in a direction that expands the distributed network resulting in a larger
allocation of network units to the constituent components. (c) Allocation percentages to the visual and
olfactory components after 50 iterations of variation and selection. Points are categorized by groupings of
“s” values in a range from 0 to 1 where s is the weight assigned to the test performance of vision when
calculating the fitness of a given network. (d) Similar to subplot c, but showing the allocation percentages
between the hippocampal and olfactory components of the network.(e) Displays the combined unit allocations
for the visual, somatosensory, and auditory portions of the network (y-axis) against the combined allocations
for the olfactory and hippocampal portions (x-axis) after 50 iterations.

Figure 6c shows the outcome of the evolutionary optimization process for di!erent values of s. When
olfactory performance is selected for (low values of s), the number of units allocated to olfaction increases
at the expense of vision, and vice-versa (high values of s), recounting the olfaction vs vision account of
sensory specialization (Figure 1). We observe that instead of singular expansion of the selected component,
a concerted change in the size of all components takes place, with olfactory and hippocampal network sizes
positively covarying with one another and inversely covarying with the sizes of the spatiotopic networks
(Figure 6d-e). These results show that a minimal degree of developmental control is su”cient to account
for the overall patterns of covariation observed across species (Figures 1 and 2). A segmental ‘prosomeric’
structure of the forebrain defined by domains of regulatory gene expressions suggest a mechanism of this
nature [35, 36].

When evolution selects for brain components, it selects for function that arises from underlying compu-
tational processes. Particular computations are aided by specific features of network architectures and
representational schemes, the spatiotopic and distributed networks discussed here being examples from what
may be an abundant space of architectural priors exploited in brain computation. Variations in network
organization o!ered up to natural selection are shaped by developmental processes and thus constrained by
directions of variation under developmental control. These ‘units of development’ might not precisely corre-
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spond to the function that is selected for, and the outcome of selection is likely a result of specific functional
demands and available developmental variation, mediated strongly by metabolic costs and other contingen-
cies [1]. The results presented here suggest that the pattern of covariation between the limbic system and
the neocortex observed across species is a consequence of developmental control of tissue allocation between
two computational systems o!ered as loci of selection. Despite the diversity of limbic system function, a
common computational architecture and coarse developmental structure underlies concerted variation of its
components. Selecting for one causes the selection of all, with pleiotropic e!ects on behavior.
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Methods

Neuroanatomical data. Brain volume measurements of insectivores, prosimians and primates are taken
from [4, 5], macrobats from [6]; carnivores, pinnipeds, ungulates, xenarthra, and the manatee from [1], and
mus musculus from [3]. Together, these constitute an extensive dataset covering a wide range of mammalian
species, a diverse array of niches (ranging from burrowing to flying, nocturnal and diurnal, omnivores and
specialists), and a wide spectrum of brain sizes. Volumes are listed for a core set of brain components –
medulla, mesencephalon, diencephalon, and striatum – as well as limbic system components, neocortex and
cerebellum. Limbic system components are amygdala, olfactory system, septum, hippocampus, and entorhi-
nal cortex and associated cortical structures (parahippocampal, presubicular, parasubicular and subicular
cortices). Structure nomenclature and phylogenetic assignments are matched to the initial work of Stephan
and colleagues [4, 5].

In Figures 1 and 2 of the main text, neocortex, olfactory system, and limbic system volumes are expressed
as a fraction of the total volume of core brain components (medulla, mesencephalon, diencephalon, and
striatum) [7]. Following Stephan [5] and Reep [1], the olfactory system is the combined volume of olfactory
bulb, olfactory cortex, olfactory tubercle including other medial forebrain nuclei, and the amygdala. See
Reep [1] for the minimal e!ects of inclusion or exclusion of the amygdala. Figure 1c (amygdala bar) considers
the amygdala separately from the olfactory system in the 103 species for which the volumes are separately
available.

The patterns of covariations in Figures 1 and 2 are also observed when considering deviations from allometric
expectations (Figure S1 in Supplementary Materials).

Self-organizing maps. Kohonen self-organizing maps (SOMs) are constructed from the multidimensional
feature spaces of pre-trained deep neural networks [25]. The spatial organization of maps arising from five
distinct networks are assessed, as described in the main text. The constructions of the maps are consistent
across all the networks.

To construct each map, the corresponding network’s input space is divided into non-overlapping patches
of static, with shapes and values scaled according to the size of the input. The set of patches are passed
through the network, one at a time, and activations arising from the final feature extraction layer (specified
below) are recorded. This constitutes the set of activations that are used for constructing the SOM. This
will be referred to as set A below.

The SOM is initialized with 625 units arranged in a 25 x 25 square lattice. Elements from set A are then
presented to the SOM as input, one at a time. Each SOM unit computes a weighted sum of this input; the
weights are chosen uniformly at random at initialization. The most active SOM unit as well as units within
its local neighborhood are then selected and their weights updated according to Kohonen’s algorithm [23].
The algorithm updates the weights such that nearby units develop similar weights over the course of multiple
iterations through A. This process is repeated for a total of 100,000 iterations. The full algorithm is provided
in Algorithm 1 below. A hyperparameter sweep is provided in Supplementary Materials (Figures S3-S4).

To visualize the map, a smooth color-gradient is set up to index all the patch locations that were used to
construct A. After constructing the map using the algorithm described above, elements of A are again passed
to the map, one at a time. The map unit that is most active for each element is assigned the corresponding
patch’s color. The map is then visualized as a 25→ 25 heatmap, where each cell corresponds to a SOM unit
and colored accordingly (Figure 4a of the main text).

The location preference of a map unit is defined as the patch index for which that unit had its highest
activation. The spatial order (smoothness) for each map (Figure 5f of the main text) is quantified by
examining the location preference of each map unit. For each unit, the average distance between its location
preference and the location preferences of immediately adjacent units is calculated. This is done for all units
in the map and averaged. This average distance is then divided by a normalization factor, representing the
expected distance in a random map computed with 10,000 Monte Carlo samples. The resulting metric is
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Algorithm 1: Self Organizing Map Algorithm

Define:
Input activations X ↑ Rp→z, for p samples with activation size z
SOM dimensions (m,n) = (25, 25)
Training iterations ω = 100000
Initial learning rate ε0 = 0.1
Initial radius r0 = max(m,n)/2 = 12.5

Initialize:
Map W ↑ Rm→n→z, wijk ↓ U(0, 1)

Optimize:
for t = 1 to ω do

Decay learning rate εt = ε0e↑t/ω

Decay radius rt = r0e↑t/(ω/ln(r0))

Sample activation x ↓ X
Select best matching index (i↓, j↓) = argmini,j ↔x↗ wij↔2
foreach wi,j ↑ W do

Calculate squared distance d = ↔[i↓, j↓]↗ [i, j]↔22
if d < rt then

Calculate neighborhood e!ect ϑ = exp(↗d2/(2r2t ))
Update wi,jnew = wi,j + εtϑ(x↗ wi,j)

end
end

end
return W

then negated to quantify smoothness and range normalized to 0-1.

The receptive field of a map unit is visualized as a heatmap whose dimensions match the shape of the input
data (Figure 4b of the main text). The intensity of each cell in the heatmap corresponds to the degree
of activation of the map unit in response to input at that cell location. The top decile of activations are
shown. The receptive field locality measure (Figure 5g of the main text) is calculated by averaging the
spatial autocorrelation (global Moran’s I [16]) of the receptive fields of all units in the map.

The specific considerations made for each map are specified below.

The vision map is constructed using activity from a pretrained ResNet18 model [10,11]. The activations are
recorded from layer 4, after the final CNN feature extraction block. The raw data input size is 225→225→3.
The patch size is 3→3→3, with patch elements assigned values between 0.5 to 1, chosen uniformly at random,
resulting in 5,625 patches for constructing the map. Before presenting the dataset of patches to the network,
the dataset is normalized to have the same mean as a subset of the ResNet18 training dataset.

The somatosensory map is constructed using a 1-frame grasp classification network, trained following the
procedure outlined in [14]. Activations are recorded from layer 10, after the ResNet feature extraction block,
maintaining consistency with the vision network. The raw input data shape is 32→ 32→ 1. The patch size is
1→1, with values between 0.5 and 1, chosen uniformly at random, resulting in 1,024 patches for constructing
the map. The patches are filtered to only include patch coordinates with non-zero pressure values in the
network’s training dataset.

The audition map is constructed using a pretrained wav2vec 2.0 model [12,13]. Activations are recorded from
layer 7, after the feature projection layer of the encoder block, consistent with the somatosensory and vision
networks. The raw waveform is truncated to 3,000 frames and transformed to a spectrogram with 5,000
frequency channels. Patches are created in the frequency domain, where each patch is a single frequency
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channel. Patch values are drawn uniformly at random from the range [0, 1], and then mapped to the range
[11, 22], matching the distribution of the raw data. After patch construction, the data is transformed back
to a waveform format. The SOM weight-update function is modified to accommodate the 1-dimensional
frequency data by only considering a single dimension distance in the update function.

The olfactory map is constructed using the olfactory systems model in [15]. The input dimension of the
model is increased from 50 to 4,096 in order to use the same SOM size as those in the other modalities.
Activations are recorded after the third layer, corresponding to the pyriform cortex in the model. The patch
size is 1 → 1, with values assigned between 0.5 to 1, uniformly at random. Before presenting the dataset of
patches to the network, the dataset is normalized to have the same mean as the network’s training dataset.

The hippocampal map is constructed using activity in the Tolman-Eichenbaum Machine [29] with an ob-
servation dimension of 45. The network is probed using a single batch of 100 rollouts and 45 basis vectors
(vectors of zeros with a single 1). At each step in the rollout, each basis vector is passed to the model and
the activation of the 7th inference layer, corresponding to the calculation of the inferred grounded location,
is recorded.

Evolutionary algorithm. The evolutionary algorithm operates on the parameter allocations of a neural
network architecture consisting of two subnetworks, one with spatiotopic and the other with distributed
connections. Each subnetwork consists of multiple components – visual, auditory and somatosensory com-
ponents in the spatiotopic network, and olfactory and hippocampal components in the distributed network.
Each component has its own input, hidden, and output layers. The components are trained simultaneously
in PyTorch using modality-specific datasets. Due to the computational requirements of evolutionary algo-
rithms, smaller datasets are used for this assessment. These are CIFAR-10 for vision, Speech Commands for
audition, and an associative memory dataset for the hippocampal subnetwork [32]. The somatosensory and
olfactory datasets are the same as those in the other assessments.

In the setup described above, the spatiotopic network components feature input layers that draw information
from a localized 5 → 5 region of the input, while the distributed network components have fully connected
input layers with a random subset of weights set to zero. The size of this random subset is chosen such that
the active parameters in the network roughly equal that of a locally connected network of the same size.
Hidden layer sizes in the spatiotopic and distributed networks are determined by a boundary B between the
two, whose position (indicated by the dotted line in Figure 6 of the main text) determines the allocation of
network units. Units allocated to each subnetwork are distributed evenly among its components.

The evolutionary algorithm is run for fifty iterations, each with a population of fifty networks. The networks
di!ered in the position of the boundary B, and thus in the allocation of units between the two subnetworks.
First, a seed network is constructed in which the boundary is placed at a location that evenly divides the
total available parameters across all five subnetworks. The initial population is constructed by sampling
uniformly within ±10% of the seed network’s boundary location, with the seed network included by default
in the first generation.

Next, the networks are trained with gradient descent for fifty epochs. The fitness of each network is measured
using a weighted combination of task performance in the visual and olfactory modalities, described below.
Twenty-five networks (half of the population) that have the highest fitness scores are then selected for
the next generation, along with an additional twenty-five networks sampled with boundary values centered
around that of the most fit network in the current generation. The results do not depend on particular
choices of these settings; the same overall results are observed for a wide range of settings (Figure S5-S7 in
Supplementary Materials).

The fitness function weighs task performance using a parameter s, where a value of 1 fully emphasizes visual
performance and a value of 0 fully emphasizes olfactory performance. Varying this parameter between 0 and
1 produces the plots in Figure 6c-e of the main text, which show the top ten highest-performing networks
after completion of the algorithm, given a specific value of the parameter s.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2025. ; https://doi.org/10.1101/2024.11.19.624321doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.19.624321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Materials

Allometric expectation. Figure S1a plots the volume of the limbic system and the volume of the neocortex
against the volume of core brain components (medulla, mesencephalon, diencephalon, and striatum) across
183 mammalian species. Both structures scale predictably at characteristic rates. The regression line running
through each set of scatter points provides the allometrically expected volume of each structure, given the
volume of core brain components. Deviations from this allometric expectation is measured by calculating the
residuals of the scatter points with respect to their corresponding regression line. These residuals are shown
in Figure S1b, which plots the residuals of the neocortex against those of the limbic system. As in Figure
2d of the main text, a negative covariation between the two structures is evident. Species with larger than
expected neocortices have smaller than expected limbic systems (low limbic / high neocortex quadrant),
whereas those with larger than expected limbic systems have smaller than expected neocortices (high limbic
/ low neocortex quadrant). One exception to this dominant trend is microbats (not shown), which have
reductions in both components due to selection pressures for light-weight nimble flight [1].

Neocortex (+5) 

Limbic System 

a b
low limbic, 

high neocortex 
high limbic, 

high neocortex 

low limbic, 
low neocortex 

high limbic, 
low neocortex 

Figure S1: (a) Volumes of the neocortex and the limbic system plotted against the volume of core brain
components across 183 species. An arbitrary constant of +5 is added to the neocortex data points to visually
separate the plots. (b) Residuals of the neocortex and limbic system data points in subplot a inversely covary
with each other.

Optimizing unstructured networks. To investigate the patterns of information convergence arising in
artificial neural networks that lack pre-specified network structure, three-layer fully connected networks are
trained using the same datasets used in the evolutionary algorithm (Methods). Each network is trained
with the “ϑ-LASSO” objective described in [28], which appends a weight thresholding step to stochastic
gradient descent. This approach encourages network weights to trend aggressively towards zero during
training, creating networks that are highly sparse, and which approximately match the performance of
identical networks trained with stochastic gradient descent while using only a fraction of the active (non-
zero) parameters.

When evaluating these networks during training, we measure the level of sparsity in the first layer and
tune the thresholding hyperparameter in ϑ-LASSO to achieve a comparable number of active weights for
each network. At the highest levels of sparsity (where 95-99% of weights are zero), the networks develop
modality-specific patterns of connectivity with varying degrees of locality, reflecting the biases inherent in
their respective datasets. Figure S2 shows the distribution of receptive field sizes in each modality after tuning
for this objective. Networks trained on data with a high degree of local correlation (vision, somatosensation
and audition) generally have localized connectivity consisting of small clusters of non-zero weights, while
those trained on data without locally correlated structure learn distributed patterns of connectivity across
the full span of their inputs (olfaction and hippocampus).
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Figure S2: Distribution of receptive field sizes (height and weight shown separately) of network units after
training a fully-connected network for each of the five modalities. Receptive field sizes are defined as the
minimal bounding box surrounding all non-zero values within a given row of the layer’s weight matrix
arranged in two dimensions. Note the di!erence between the shape of the distributions in the spatiotopic
modalities and olfaction/hippocampus.

Hyperparameter sweep of the self-organizing map algorithm. The configurable parameters in the
self-organizing map algorithm (Algorithm 1 in supplementary methods) are the initial learning rate and
the map size. All other parameters of the algorithm are computed as a function of these two. The results
presented in the main text use an initial learning rate of 0.1 and a map size of 25 → 25. The results are
consistent across variations of these settings. A parameter sweep is presented below.

Figure S3 shows the indices for the spatiotopic order of the maps and the locality of their receptive fields for
the five modalities across di!erent values of the initial learning rate. The same patterns as in Figure 5f-g of
the main text are seen across these settings.

Figure S3: Spatiotopic order of the maps and the locality of their receptive fields in the five modalities
across di!erent values of the learning rate (LR). Plotted are the means and standard deviations across ten
simulations with di!erent random seeds.

Figure S4 shows that di!erent map sizes produce the same overall results.
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Figure S4: Spatiotopic order of the maps and the locality of their receptive fields in the five modalities
across di!erent map sizes. Plotted are the means and standard deviations across ten simulations with
di!erent random seeds.

The same overall results are also observed for di!erent patch sizes (used to probe the organization of the
map) as well as for PCA map initialization, where the initial weights of the map units are set to the first
principal components of the map input instead of random values.

Hyperparameter sweep of the evolutionary algorithm. The configurable parameters in the evolu-
tionary algorithm are (1) the fraction of best-performing networks in a given generation that persist to the
next generation, and (2) the extent of the variation of the boundary location around that of the highest-
performing network. In the following, these two parameters are referred to as k and ϖ respectively. In Figure
6 of the main text, values of k = 0.5 and ϖ = 0.1 are used; ϖ = 0.1 means that new networks are formed by
sampling uniformly within ±0.1 of the fittest network’s boundary location, which lies in the range [0, 1], 0
corresponding to one end of the network and 1 corresponding to the other end. The results are consistent
across variations of these parameters. A parameter sweep is presented below.

Figure S5 sweeps through di!erent values of k. The pattern of covariation between network components
stays the same across settings. Figure S6 sweeps through di!erent values of ϖ, again showing the same
trends.

When generating new networks, the total number of parameters allocated to the olfactory network is allowed
to drift randomly by up to a percentage ϱ, resulting in an additional degree of variability among the new
networks. In Figure 6 of the main text, a value of ϱ = 10% is used. The same overall trend is observed for
di!erent settings of ϱ, as shown in Figure S7.
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a.   k = 0.4

b.   k = 0.6

c.   k = 0.8

Figure S5: Covariation patterns resulting from the evolutionary algorithm for di!erent values of the param-
eter k, which determines the fraction of best performing networks in a given generation that persist to the
next generation.
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b.   𝛔 = 0.3

a.   𝛔 = 0.2

c.   𝛔 = 0.4

Figure S6: Covariation patterns resulting from the evolutionary algorithm for di!erent values of the param-
eter ϖ, which determines the extent of the variation of the boundary location around that of the highest-
performing network.
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a.   𝛅 = ±5% 

b.   𝛅 = ±15% 

c.   𝛅 = ±20% 

Figure S7: Covariation patterns resulting from the evolutionary algorithm for di!erent values of the drift
parameter ϱ.
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